日韩欧美精品96一区二区,秋霞理论理论福利院久久,一个人的在线观看www,性温盈久久亚洲AV福利

供求商機(jī)
您現(xiàn)在的位置:首頁 > 供求商機(jī) > 石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882
點(diǎn)擊放大
供應(yīng)數(shù)量:
2351
發(fā)布日期:
2025/7/18
有效日期:
2026/1/18
原 產(chǎn) 地:
已獲點(diǎn)擊:
2351
產(chǎn)品報價:
  [詳細(xì)資料]

只用于動物實(shí)驗(yàn)研究等

Graphene Oxide Powders and Solutions

Graphene oxide is one of the most popular 2D materials available. This is due to the wide range of fields that it can be applied to. It has a distinct advantage over other 2d materials (such as graphene), as it is easily dispersed within solution; allowing for processing at high concentrations. This has opened it up for use in applications such as optical coatings, transparent conductors, thin-film batteries, chemical resistant coatings, water purification, and many more.

Ossila have two types of graphene oxide powders available, with flake sizes between 1-5um and 1-50um. In addition, we also offer pre-dispersed graphene oxide solutions for simple instant use.

Graphene Oxide Powder

Graphene Oxide Powder StructureGraphene Oxide Powder XRD
  • List of products
  • What is graphene oxide?
  • Dispersion guides
  • Technical data and images
  • Publications
 

石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

Product List

Graphene Oxide Powders

Product codeM881M882
Flake Size1-5 μm1-50 μm
Flake Thickness0.8-1.2 nm0.8-1.2 nm
Single layer ratio>99%>99%
Purity>99%>99%
Packaging InformationLight resistant bottleLight resistant bottle

Graphene Oxide Solutions

Product codeM883M884M885M886
Solution Volume100ml100ml100ml100ml
Concentration5 mg.ml-10.5 mg.ml-15 mg.ml-10.5 mg.ml-1
SolventsWater:IPAWater:IPAWater:IPAWater:IPA
Flake Sizes1-5 μm1-5 μm1-50 μm1-50 μm
Packaging Information4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles

石墨烯 英國Ossila石墨烯氧化物E881 進(jìn)口石墨烯氧化物E882

What Graphene Oxide is

Graphene oxide (GO), also referred to as graphite/graphitic oxide, is obtained by treating graphite with oxidisers, and results in a compound of carbon, oxygen, and hydrogen in variable ratios.

The structure and properties of GO are much dependent on the particular synthesis method and degree of oxidation. With buckled layers and an interlayer spacing almost two times larger (~0.7 nm) than that of graphite,  it typically still preserves the layer structure of the parent graphite.

GO absorbs moisture proportionally to humidity and swells in liquid water. GO membranes are vacuum-tight and impermeable to nitrogen and oxygen, but permeable to water vapours. The ability to absorb water by GO depends on the particular synthesis method and also shows a strong temperature dependence.

GO is considered as an electrical insulator for the disruption of its sp2 bonding networks. However, by manipulating the content of oxygen-containing groups through either chemical or physical reduction methods, the electrical and optical properties of GO can be dynamically tuned. To increase the conductivity, oxygen groups are removed by reduction reactions to reinstall the delocalised hexagonal lattice structure. One of the advantages GO has over graphene is that it can be easily dispersed in water and other polar organic solvents. In this way, GO can be dispersed in a solvent and reduced in situ, resulting in potentially monodispersed graphene particles.

Due to its unique structure, GO can be functionalised in many ways for desired applications, such as optoelectronics, drug delivery, chemical sensors, membrane filtration, flexible electronics, solar cells and more.

GO was first synthesised by Brodie (1859), followed by Hummers' Method (1957), and later on by Staudenmaier and Hofmann methods. Graphite (graphene) oxide has also been prepared by using a "bottom-up" synthesis method (Tang-Lau method) where glucose is the sole starting material. The Tang-Lau method is considered to be easier, cheaper, safer and more environmentally-friendly. The thickness, ranging from monolayer to multilayers, can by adjusted using the Tang-Lau process. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the GO.

Dispersion Guides

Due to the presence of oxygen and hydroxide groups, the dispersibility of this material is significantly better than other 2d materials (such as graphene). High concentrations of GO can be dispersed in polar solvents, such as water. At Ossila, we have found that the most stable solutions can be produced using the following recipe:

  • Weigh out desired amount of material, this can go up to at least 5 mg.ml-1.
  • Add 1:1 ratio of deionized water to isopropyl alcohol.
  • Shake vigorously to break up material.
  • A short treatment in an ultrasonic bath will rapidly disperse the material.
  • For larger flakes, use a mechanical agitator instead (as sonication may damage the flakes).

Technical Data

General Information

CAS number7782-42-5 (graphite)
Chemical formulaCxHyOz
Recommended SolventsH2O, DMF, IPA
Synonyms
  • Single layer GO
  • GO
Classification / Family

2D semiconducting materials, Carbon nanomaterials, Graphene, Organic electronics

Colour

Black/Brown Sheets/Powder

 

Product Images

Monolayer Graphene OxideGraphene Oxide SEMSEM Images of flakes on silicon

 

想了解更詳細(xì)的產(chǎn)品信息,填寫下表直接與我們聯(lián)系:

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說明:

  • 驗(yàn)證碼:

    請輸入計算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7
深圳市澤拓生物科技有限公司 專業(yè)提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國EMS電鏡耗材
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
在線客服
亚洲视频综合在线分类观看| 国产乱子伦精品免费无码专区| 丁香婷婷激情五月在线观看| 久久人妻av一区二区三区| 91久久精品凹凸一区二区| 超大胆丝袜人妻无码系列| 国产农村妇女毛片精品久久| 国产 无码 AV在线 | 日本伦理在线观看中文字幕| 91人妻午夜黄片免费看| 丰满的熟女一区二区三区l| 无码无修无遮挡纯肉动漫| 久久亚洲国产成人精品无码区| 无码人妻一区二区三区免费视频| 国产亚洲精品久久久久久无| 99久久亚洲国产精品观看| 99re9966精品视频| 99久久国产精品人妻无码| 人妻熟妇乱又伦精品hd| 亚洲熟女激情网| 三级国产国语三级在线2| 国产精品按摩师| 小13箩利洗澡无码视频免费网站 | 亚洲va欧美va人人爽| 亚洲日韩精品久久玖玖玖| 在线v亚洲v欧美v专区| 日韩欧美亚洲精品成人福利| 国模裸体无码xxxx视频| 国产欧美三级久久久一区| 成人国产一区二区三区精品| 无码中文字幕Av免费放| 最新国语自产精品视频在| 精品欧美一区二区三区视频| 少妇人妻偷人精品一区二区| 日韩精品无码一区| 久久精品免视看国产明星| 欧美一级一区二区三区电影| 国产精品国产三级国产专播| 国产精品三及片| 日韩精品一区二区中文字幕| 欧美日本一区二区三区道|