日韩欧美精品96一区二区,秋霞理论理论福利院久久,一个人的在线观看www,性温盈久久亚洲AV福利

供求商機
您現(xiàn)在的位置:首頁 > 供求商機 > PDPP2T-TT-OD Ossila材料DPP-DTT 1260685-66-2 (1444870

PDPP2T-TT-OD Ossila材料DPP-DTT 1260685-66-2 (1444870

PDPP2T-TT-OD Ossila材料DPP-DTT 1260685-66-2 (1444870
點擊放大
供應數(shù)量:
2466
發(fā)布日期:
2025/7/18
有效日期:
2026/1/18
原 產(chǎn) 地:
已獲點擊:
2466
產(chǎn)品報價:
  [詳細資料]

只用于動物實驗研究等

A high-purity, high molecular-weight polymer based on a backbone of diketopyrrolo-pyrrole-dithiophene-thienothiophene (DPP-DTT) for use in high-mobility air-stable OFETs[1,2], high-efficiency OPVs, and as a p-type interface layer for perovskite solar cells.

Pricing

DPP-DTT (also referred to as PDPP2T-TT-OD) is now available featuring:

  • High molecular weight (higher molecular weight offers higher charge mobility )
  • High purity (DPP-DTT is purified via Soxhlet extraction with methanol, hexane and chlorobenzene under an argon atmosphere)
  • Batch-specific GPC data (so you have confidence in what you are ordering. Also, GPC data is always convenient for your thesis and publications)
  • Large quantity orders (so you can plan your experiments with polymer from the same batch)
 BatchQuantity 
M315100 mg 
M315250 mg 
M315500 mg 
M3151 g 
M3155 g / 10 g* 

*For 5 - 10 grams order quantity, the lead time is 4-6 weeks.

Batch information

BatchMwMnPDIStock info
M314292,20074,9003.90Out of Stock
M315278,78176,3233.65In stock

PDPP2T-TT-OD Ossila材料DPP-DTT 1260685-66-2 (1444870-74-9)
 

General Information

CAS number1260685-66-2 (1444870-74-9)
Chemical formula(C60H88N2O2S4)n
HOMO / LUMOHOMO = -5.2 eV, LUMO = -3.5 eV [2]
Synonyms
  • PDBT-co-DTT
  • PTT-DTDPP
  • PDPP-DTT
  • PDPP2T-TT
  • PDPP2T-TT-OD
  • DPPDTT
  • Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)]
SolubilityChloroform, chlorobenzene and dichlorobenzene
Classification / FamilyBithiophene, Thienothiophene, Organic semiconducting materials, Low band-gap polymers, Organic photovoltaics, Polymer solar cells, OFETs

PDPP2T-TT-OD Ossila材料DPP-DTT 1260685-66-2 (1444870-74-9)
 

DPP-DTT polymer chemical Structure, 1444870-74-9
Chemical structure of DPP-DTT, CAS No. 1260685-66-2.

PDPP2T-TT-OD Ossila材料DPP-DTT 1260685-66-2 (1444870-74-9)
 

OFET and Sensing Applications

The exceptional high mobility of this polymer of up to 10 cm2/Vs [2] via solution-processed techniques, combined with its intrinsic air stability (even during annealing) has made PDPP2T-TT-OD of significant interest for OFET and sensing purposes.

While the highest mobilities require exceptional molecular weights of around 500 kD (and with commensurate solubility issues), high mobilities in the region of 1-3 cm2/Vs can still be achieved with good solution-processing at around 250 kD. As such, we have made a range of molecular weights available to allow for different processing techniques.

In our own tests, we have found that by using simple spin-coating onto an OTS-treated silicon substrate (using our prefabricated test chips), high mobilities comparable to the literature can be achieved  (1-3 cm2/Vs). Further improvements may also be possible with more advanced strain-inducing deposition techniques.

DPP-DTT OFET output characteristics  DPP-DTT OFET transfer curves  
DPP-DTT saturation mobility fit  DPP-DTT OFET mobilityExample OFET characteristics for DPP-DTT (M313) solution processed from chlorobenzene on a 300 nm SiO2 substrate treated with OTS. Output characteristic (top left), transfer curves (top right), mobility fitting (bottom left) and calculated mobility (bottom right).

 

Photovoltaic Applications

Although shown as a promising hole-mobility polymer for OFETs, when used as the donor material in a bulk heterojunction photovoltaic (with PC70BM as the acceptor), initial efficiencies of 1.6% were achieved for DPP-DTT [3]. The low device metrics were attributed to poor film morphology. However, a higher efficiency of 6.9% was achieved by using thicker film (220 nm) [4].

PDPP2T-TT-OD has also recently been used successfully as an active-layer dopant material in PTB7-based devices [5]. An improvement in device performance was observed, with average efficiencies increasing from 7.6% to 8.3% when the dopant concentration of DPP-DTT was 1 wt%. The use of DPP-DTT as a high-mobility hole-interface layer for perovskite hybrid devices has also been investigated [6].

Synthetic route

DPP-DTT synthesis: DPP-DTT was synthesised by following the procedures described in [2] and [3] (please refer to the following references):

With 2-thiophenecarbonitrile and dimethyl succinate as starting materials in t-amyl alcohol, it gave 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione. Alkylation of 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione with 2-octyldodecylbromide in dimethylformamide afforded 3,6-bis(thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione. Further bromination gave3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (M1).

 

 

Further reaction of M1 with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene (M2) under Stille coupling conditions gave the target polymer DPP-DTT, which was further purified via Soxhlet extraction with methanol, hexane and then chloroform.

 

References:

  1. A High Mobility P-Type DPP-Thieno[3,2-b]thiophene Copolymer for Organic Thin-Film Transistors, Y. Li et al., Adv. Mater., 22, 4862-4866 (2010)
  2. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, J. Li et al., Nature Scientific Reports, 2, 754, DOI: 10.1038/srep00754 (2012)
  3. Synthesis of low bandgap polymer based on 3,6-dithien-2-yl-2,5-dialkylpyrrolo[3,4-c]pyrrole-1,4-dione for photovoltaic applications, G. Zhang et al., Sol. Energ. Mat. Sol. C., 95, 1168-1173 (2011)
  4. Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films, Li W et al., Adv Mater., 25(23):3182-3186 (2013); doi:10.1002/adma.201300017.
  5. Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer, S. Liu et al., Energy Environ. Sci., 8, 1463-1470 (2015)
  6. Electro-optics of perovskite solar cells, Q. Lin et al., Nature Photonics, 9, 106-112 (2015)
  7. A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory, X. She et al., adv. Mater., 29, 1604769 (2017); DOI: 10.1002/adma.201604769.
  8. Solvent-Free Processable and Photo-Patternable Hybrid Gate Dielectric for Flexible Top-Gate Organic Field-Effect Transistors, J. S. Kwon et al., ACS Appl. Mater. Interfaces, 9 (6), 5366–5374 (2017); DOI: 10.1021/acsami.6b14500.
想了解更詳細的產(chǎn)品信息,填寫下表直接與我們聯(lián)系:

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結(jié)果(填寫阿拉伯數(shù)字),如:三加四=7
深圳市澤拓生物科技有限公司 專業(yè)提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國EMS電鏡耗材
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
在線客服
国产精品三级国产专用不卡| 亚洲精品欧美二区三区中文字幕| 欧美bbbbbbb精品| 99久久免费国产精品热| 亚洲高清久久久久久久十妇| 午夜美女被肏屄| 人妻久久精品669系列| 中日韩中文字幕无码一本| 国产在线播放线99香蕉| 亚洲一区二区三区人人爽| 99久久亚洲精品无码毛片| 精品久久久无码午夜福利| 亚洲AV成人无码网站…| 丰满少妇大乳高潮在线| 日本一区二区三区老版视频| 日本午夜天堂视频在线观看| 91自国产精品中文字幕| 韩国产精品免费人成视频| 99在线视频99高清视频| 青青草三级在线| 亚洲精品久久久久中文字幕| 久久好色人妻五月天丁香| 青青操在线免费手机视频| 国产精品久久久18成人| 欧美性色欧美a在线在线| 亚洲综合色丁香婷婷六月图片| 久久综合久久鬼色| 国产999在线视频观看| 亚洲v欧美v国产ⅴ在线成| 国产熟女一区二区三区五月婷| 国产av精品久久一区二区| 性欧美精品久久久久久久| 女生啊啊啊高朝在线观看| 国产一区二区三区成人欧美日韩在线观看 | 欧美丰满大屁股在线喷水| 欧美一区二区三区尤物喷汁| 亚洲色AⅤ传媒| 中文字幕国产精品日韩精品 | 亚洲第一黄色网| 五月天亚洲色图热热成人| 小骚货操我啊h无码视频|